邢声远(北京联合大学商务学院)
简要介绍了陶瓷纤维的工业生产现状,重点论述了陶瓷纤维的化学组成、结构和理化性能,以及制造方法与产品开发,并分析了陶瓷纤维的发展趋势。
陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热容小及耐机械震动等优点,因而在机械、冶金、化工、石油、交通运输、船舶、电子及轻工业部门都得到了广泛的应用,在航空航天及原子能等尖端科学技术部门的应用亦日益增多.发展前景十分看好。陶瓷纤维在我国起步较晚,但一直保持着持续发展的势头,生产能力不断增加,并实现了产品系列化.我国已发展成为世界陶瓷纤维生产大国。
1 陶瓷纤维的现状及发展趋势
早在1941年,美国巴布考克•维尔考克斯公司就利用天然高岭土经电弧炉熔融后喷吹成了陶瓷纤维。20世纪40年代后期,美国有两家公司生产硅酸铝系纤维.并第1次将其用于航空工业。进入50年代,陶瓷纤维已正式投入工业化生产.到了60年代.已研制开发出多种陶瓷纤维制品,并开始用于工业窑炉的壁衬。1973年全球出现能源危机后,陶瓷纤维获得了迅速的发展,其中以硅酸铝系纤维发展最快.每年以10%~15%的速度增长。美国和加拿大是陶瓷纤维的生产大国,年产量达到了10万t左右.约占世界耐火纤维年总产量的1/3。欧洲的陶瓷纤维产量位于第三.年产量达到6万t左右。在年产30万t的陶瓷纤维中.各种制品的比例大致为:毯和纤维模块45%;真空成型板、毡及异形制品25%;散状纤维棉15%:纤维绳、布等织品6%;纤维不定形材料6%:纤维纸3%。
陶瓷纤维制品的应用领域主要是加工工业和热处理工业(工业窑炉、热处理设备及其它热工设备),其消耗量约占40%.其次是钢铁工业,其消耗量约占25%。国外在提高陶瓷纤维产量的同时,注意研制开发新品种,除1000型、1260型、1400型、1600型及混配纤维等典型陶瓷纤维制品外,近年来在熔体的化学组分中添加ZrO2、Cr2O3等成分.从而使陶瓷纤维制品的最高使用温度提高到1300℃。此外.有些生产企业还在熔体的化学组分中添加CaO、MgO等成分.研制开发成功多种新产品。如可溶性陶瓷纤维、含62%~75%Al2O3的高强陶瓷纤维及耐高温陶瓷纺织纤维等。因此,目前在国外陶瓷纤维的应用带来了十分显著的经济效益,导致陶瓷纤维的应用范围日益扩大,一些主要工业发达国家的陶瓷纤维产量继续保持持续增长的发展势头,其中尤以玻璃态硅酸铝纤维的发展最为迅速。同时,随着陶瓷纤维应用范围的不断扩大,导致陶瓷纤维制品的生产结构随之发生重大改变.如陶瓷纤维毯(包括纤维块)的产量由过去占陶瓷纤维产量的70%下降至45%;陶瓷纤维深加工制品(如纤维绳、布等纤维制品)、纤维纸、纤维浇注料、可塑料、涂抹料等纤维不定形材料的产量大幅度增长,接近于陶瓷纤维产量的15%。陶瓷纤维新品种的开发生产和应用,大大促进了陶瓷纤维的应用技术和施工方法的发展。
我国陶瓷纤维生产起步较晚,在20世纪70年代初期,才先后在北京耐火材料厂和上海耐火材料厂研制成功并投入批量生产。其后10余年主要以“电弧炉熔融、一次风喷吹成纤、湿法手工制毡”的工艺生产陶瓷纤维制品,工艺落后,产品单一。自1984年首钢公司耐火材料厂从美国CE公司引进电阻法甩丝成纤陶瓷纤维针刺毯生产线后.至1987年,又有河南陕县电器厂、广东高明硅酸铝纤维厂和贵阳耐火材料厂分别从美国BW公司和Ferro公司引进了3条不同规模、不同成纤方法的陶瓷纤维针刺毯生产线及真空成型技术.从此改变了我国陶瓷纤维生产工艺、生产设备落后和产品单一的面貌。
自1986年开始.我国通过对引进的陶瓷纤维生产设备和工艺消化、吸收,并结合国情研制、设计建成了不同类型的电阻法甩丝(或喷吹)成纤干法针刺毯生产线82条,安装在45家企业内。年产量已达到10万t以上,成为世界最大的生产国。产品品种多样化.除批量生产低温型、标准型、高纯型、高铝型等多种陶瓷纤维针刺毯及超轻质树脂干法毡(板)外.还可生产14%~17%ZrO2的合锆纤维毯。其使用温度可达1300℃以上。
20世纪80年代末期,日本直井机织公司、车铁及英特莱等机织品公司相继在北京投资建成了陶瓷纤维纺织品专业生产企业,并批量生产陶瓷纤维布、带、扭绳、套管、方盘根等陶瓷纤维纺织品.纤维织品生产所需的散状纤维棉及工艺装备均已实现了国产化。90年代初,北京、上海、辽宁鞍山、山东、河南三门峡等地先后从美国、法国、日本等国引进了陶瓷纤维的喷涂技术和设备;并在冶金、石化部门工业窑炉上应用了陶瓷纤维喷涂炉衬,节省了能耗,取得了良好的经济效益,现已得到了普遍推广,并在冶金、石化和机械等部门工业炉和加热装置中的应用取得了成功的经验。与陶瓷纤维喷涂技术同步发展的陶瓷纤维浇注料、可塑料、涂抹料等纤维不定形材料.不仅已建有国内生产企业,而且已在各类工业窑炉、加热装置和高温管道上推广应用。
因此,目前我国陶瓷纤维已处于持续调整发展的阶段,陶瓷纤维的生产工艺与设备,尤其是干法针刺毯的生产工艺与设备具有世界先进水平,含铬、含锆硅酸铝纤维板,多晶氧化铝纤维.多晶莫耒石纤维及混配纤维制品等新型陶瓷纤维与制品相继开发成功,并投放了工业化生产,使纤维状轻质耐火材料构成了完整的系列产品。陶瓷纤维应用范围的不断扩大,致使高强度、抗风蚀硬性纤维壁衬应用日益普及。同时,陶瓷纤维生产技术的发展,也大大推动了陶瓷纤维的应用技术和施工方法的发展。
2陶瓷纤维的化学组成与结构性质
2.1 陶瓷纤维的化学组成
陶瓷纤维的化学组成见表1所示。

2.2陶瓷纤维的结构性质
陶瓷纤维的直径一般为2~5μm.长度多为30~250 mm,纤维表面呈光滑的圆柱形,横截面通常是圆形。其结构特点是气孔率高(一般大于90%),而且气孔孔径和比表面积大。由于气孔中的空气具有良好的隔热作用,因而纤维中气孔孔径的大小及气孔的性质(开气孔或闭气孔)对其导热性能具有决定性的影响。实际上.陶瓷纤维的内部组织结构是一种由固态纤维与空气组成的混合结构,其显微结构特点是固相和气相都是以连续相的形式存在,因此,在这种结构中,固态物质以纤维状形式存在,并构成连续相骨架,而气相则连续存在于纤维材料的骨架间隙之中。正是由于陶瓷纤维具有这种结构,使其气孔率较高、气孔孔径和比表面积较大,从而使陶瓷纤维具有优良的隔热性能和较小的体积密度。
3陶瓷纤维的机械物理性能
陶瓷纤维品种较多,其化学成分也不相同,因此其机械物理性能也有较大的差异,现选择具代表性的4种主要陶瓷纤维的典型性能列于表2。
4陶瓷纤维的制造方法
4.1化学气相反应法
化学气相反应(CVR)法是以B2O3,为原料.经熔纺制成B2O3纤维,再置于较低的温度和氨气中加热.使B2O3与氨气反应生成硼氨中间化合物,再将这种晶型不稳定的纤维在张力下进一步在氨气或氨与氮的混合气体中加热至1800℃.使之转化成BN纤维,其强度可高达2.1GPa,模量可达345 GPa。
4.2化学气相沉积法
化学气相沉积(CVD)法系由钨芯硼纤维氮化而成。制造时,先将硼纤维加热至560℃进行氧化.再将氧化纤维置于氨中加热至1000~1400℃,反应约6 h后即可制得BN纤维。
4.3聚合物前躯体法
聚合物前躯体法是由聚硼氮烷熔融纺丝制成纤维后,进行交联.生产不熔化的纤维.再经裂解制成纤维。
Si3N4纤维有两种制法:一是以氯硅烷和六甲基二硅氮烷为起始原料,先合成稳定的氢化聚硅氮烷.经熔融纺丝制成纤维,再经不熔化和烧制而得到Si3N4纤维;二是以吡啶和二氧化硅烷为原料.在惰性气体保护下反应生成白色的固体加成物,再于氮气中进行氨解得到全氢聚硅氮烷,再置于氮气中进行氨解得到全氢聚硅氮烷.再置于烃类有机溶剂中深解配置成纺丝溶液,经干法纺丝制成纤维.然后在惰性气体或氨气中于1100~1200℃温度下进行热处理而得氮化硅纤维。
SiBN3C纤维也是采用聚合物前躯体法生产的.是一种最新的陶瓷纤维.起始原料为聚硅氮烷,经熔融纺丝、交联、不熔化和裂解后制得纤维。
SiO2纤维是通过与制备高硅氧玻璃纤维相同的工艺制得的,先制成玻璃料块.再进行二次熔化.采用铂金坩锅拉丝炉进行熔融纺丝,温度约1150℃.得到纤维或进一步加工成织物等成品后用热盐酸处理,除掉B2O3HNa2O成分.再进行烧结使纤维中SiO2的质量分数达到95%~100%。另外,还有以SiO2为原料,配制成高粘度的溶胶后进行纺丝,制得前躯体纤维后,再加热至1 000℃,便可制得纯度为99.999%的石英纤维。此外,还可用石英棒或管用氢氧焰熔融拉成粗纤维,然后再以恒定速度通过氢氧焰或煤气火焰高速拉成直径为4~10μm的连续长纤维,SiO2含量为99.9%。
5陶瓷纤维的应用领域
陶瓷纤维是一种新型纤维状轻质耐火材料,应用领域很广,主要用于金属基和陶瓷基复合材料和隔热功能材料,如应用于航空、航天和其它要求耐高温和较好力学性能的部件,包括烧蚀材料(如宇航器重返大气层的隔热罩、火箭头锥体、喷嘴、排气口和隔板等)。此外.还可应用于熔融金属或高温气液体的过滤材料和耐极高温的绝热材料等。
6 目前陶瓷纤维发展的趋势
6.1 陶瓷纤维产品品种和生产规模持续发展
自20世纪90年代以来.一些大的陶瓷纤维生产企业为了增强抗风险的能力,纷纷组建集团,并进行了内部结构调整.淘汰了一些落后的工艺与设备及生产线,在产品